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A method of grid generation for cascades using conformal mapping is proposed. In this 

method, the transformation function which directly maps the domain of two periods of the 
cascade onto a rectangular region is determined numerically. The method is applied to the 

cases of high solidity without any difficulty. Once a fundamental O-type grid is obtained, 

either a through-flow grid or grids of C-type can be generated through it. 

1. INTR~DIJCTI~N 

The numerical calculation of a flow field needs a suitable treatement of the 
boundary condition which can be quite difftcult to incorporate for complex 
geometries encountered in many problems. Good results are obtained when the 
boundaries correspond to grid surfaces. It is often desired for the coordinates to be 
orthogonal or nearly orthogonal and the mesh spacing to be directly controllable. In 
two dimensions, conformal mapping is a very powerful tool to generate such 
computational grids. 

In the present paper, a method for grid generation for cascades using conformal 
mapping is proposed. Consider the highly regarded procedure developed by lves and 
Liutermoza [I]. In their method, the first transformation maps the region exterior to 
the cascade of blades onto the region interior to a near circle and the second transfor- 
mation maps the interior of the near circle onto the interior of a unit circle. When the 
solidity of the cascade is low, the first transformation produces a reasonable near 
circle but as the solidity increases. the contour tends to be peanut-shaped and the 
second transformation ceases to perform well. The method described in the present 
paper determines the transformation function mapping the region for two periods of 
the cascade of blades onto a rectangular region directly. The difftculty associated 
with the Ives-Liutermoza method, is thus eliminated. 

The following assumptions are made: (1) the physical plane is z = x + 6’ plane, the 
blades make a row in J’ direction, (2) the contour of one of the blades is given by a 
set of data z, =x, + iy, (1 < n <N, zh. = z,), ordered in clockwise sense, (3) the 
coordinate x of the blade takes the values between -1 and 1 and the pitch of the 
blades in J direction is h. 
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FIG. I. Physical plane (z plane). 

2. FUNDAMENTAL MAPPING (O-TYPE GRIDS) 

We seek a transformation function mapping the region of the physical plane (z = 
x + & plane) for two periods of the cascade as shown in Fig. 1 onto an infinite strip 
on the computational plane ([= r + iv plane) (Fig. 2). The mapping function is 
assumed to have the form 

z=A, Xlog sn([, k) - 1 + 6 C+osh(j- l)$ 
Jr, I 

, 

where A, is a real parameter which ultimately tends to one, C,i = Al + iB., and k 
(0 < k < 1) are undetermined constants, K and K’ the complete elliptic integrals of 
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t 

FIG. 2. Computational plane ([plane). 
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the first kind with the moduli k and k’ = (1 -k’)“’ respectively. sn one of the 
Jacobian elliptic functions. When 

A,= 1, k = exp(-2x//z), Aj=Bj=O (j> 1). (2) 

expression (1) gives the mapping function for a cascade of flat plates of chord 2. 
pitch h, and zero stagger. 

Putting [= K + iv in (1) and writing the real and imaginary parts separately. we 
obtain 

x=A, -ilogdn(q,k’)- 1 +A, 

+ ‘+ Ajcosh(j- l)$cos(j- I)% 
-I j=2 

nq I -Bjsinh(j- l)K’sin(j- l)~( 
I 
, 

y=A, k, +t2 /B;sh(j- l)$cos(j- 1)s 

71K nv 1 +Ajsinh(j- l)K’sin(j- l)~‘i 1 , 

(3) 

(4) 

where dn is one of the Jacobian elliptic functions. The forms of (3) and (4) suggest 
an iterative method of solution. The origin of this iterative procedure may be found in 
the works of Imai [2,3] for the cases of single airfoil. 

The nth approximations A:“), Bj”‘. and k’“’ are assumed to be known. 

(i) These values are substituted into (3) and the value of Ai”‘i’ is so deter- 
mined that xmax = -x,,,~“. Then, the constant Ar+” is so determined that 
x mar - x,,,~” = 2. Using the data for the left-hand side of (3). we get the relation 

9=rl fn+ “(X). (5) 

(ii) Using an appropriate constant s0 (typically 0.5) we replace A:,,’ ” by 
(1 - E,,) Ar’ + c,A~+? 

(iii) Using Art ‘), we get k”‘+ ” by 

log k (PI+” ,A(Pl+‘, 
0 log k(“‘. (6) 

A, tends to one as the approximation goes on. 

(iv) Though the profile of the blade is given in the form J)(x), relation (5) 
enables us to write y as a function of q, 

Y=Y ‘n+ “(II). 
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This is used for the left-hand side of (4) and the Fourier analysis gives 

1 K’ 
A!“+ 1) 

I =K’A,sinh[(j- l)rrK/K’] 
Ysin[(j- l)?rv/K’] dq (.i > 21, -K’ 

1 
I 

K’ 
g!n+ 1) _ 

J - K’A,, cosh[(j- 1) &/K’] -K, ” cos[(j- ‘) “lK I drl (.i> I). 

(v) With an appropriate constant E, (typically 0. l), A)” +‘I and Bin+ ” are 
replaced by (1 -c,)A~“‘+E,A~“~‘) and (1 -e,)Bj”‘+~,Bj”+“. 

The procedure (i)-(v) is repeated until the required convergence is attained. The 
values for the cascade of flat plates (2) are taken as the first approximation. 
Steps (iii) and (v) of the procedure prevent the divergence of the successive approx- 
imation and E,, and E, are relaxation constants. 

Examples of grids generated by the present method are shown in Figs. 3 and 4. In 
these grids, the lines of constant < encircle the blades and the grids are called O-type. 
Across the periodic boundaries OA and OE, the lines of constant v continue 
smoothly. As the solidity increases, the constant k decreases and K’/K increases. The 
present method does not break down for the solidity as high as 2.9. 

Here, the derivation of (6) is described. In order that the pitch of the cascade in z 
plane equals h, A, must be one. Also k’“+‘) is determined so that 
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A,, log dn(q, k’(“‘) = log dn(q, k”” + I’). (7) 

Relation (2) for the case of flat plates suggests that when the solidity is not small, 

k’ + 1 and sn(q, k’) + tanh q. 

FIG. 3. Example of O-type grid (1). Solidity 1.58, N= 42, J= 20, q, = 0.5, E, = 0.1. k = 
4.10 x IO-*, K = 1.57, K’ = 11.5. 
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FIG. 4. Example of O-type grid (2). Solidity 1.73. N= 32. J= 10. 
1.59 x lo- ', K = 1.57. K' = 12.4. 

co= 0.5, el = 0.1. k = 

Then, for a wide range of q, 

and 

sn(?/, k’) + 1 

dn(q, k’) = [ 1 - k” sn’(q, k’)]“’ + k. 

Putting this into (7), we obtain 

log kc”+ I) = A, log k’“‘. 

3. THROUGH-FLOW GRIDS 

The mapping function obtained in the preceding section can be used to generate 
grids of other types. First, we treat a grid in which one family of the grid curves 
represents the streamlines of a flow through the cascade from left to right as shown in 
Fig. 5 (through-flow grids). We consider the complex velocity potential Z = X + iY of 
a flow induced by a distribution of sources and sinks on the C plane, 

unit sinks at [ = 2mK + RnK’, 

unit sources at C = 2mK + i(2n - I) K’, 

with m, n = 0, f 1, *2 ,... , 

(8) 
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FIG. 5. Streamlines of the flow which generates a through-flow grid. 

as shown in Fig. 6. The through-flow grid is based on the X and Y coordinates. The 
flow induced by the distribution (8) is expressed as 

Z = log sn([, k). 

Solving for i, produces 

(=J, 
,$XP Z 

[(l -?)(I -k*t’)]-“‘dt. 

iK’ 

a 0 
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FIG. 6. Distribution of sources and sinks on [ plane which generates a through-flow grid. 
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FIG. 

I I I I I 

Through-flow grid for the cascade; same as shown in Fig. 3. 

At the stagnation points of the flow [ = K and K + iK’, 

Z(K) = 0 and Z(K + iK’) = -log k. 

In Fig. 7, an example of the through-flow grid for the same cascade shown in 
Fig. 3 is shown. The grid continues smoothly across the periodic boundaries OC. OG, 
DE, and FE. 

4. C-TYPE GRIDS I 

Next, consider a grid in which a family of coordinate lines represents the 
streamlines of a flow starting from infinity to the right, encircle the blades, and 
returning to infinity to the right (Fig. 8). The flow, due to a distribution of sources 
and sinks on [ plane, has 

unit sources at c = 2mK + i(4n - 1) K’, 

unit sinks at [ = 2mK + i(4n + 1) K’, 

@y: 

0 
Y.rll2 A 

FIG. 8. Streamlines of the flow which generates a C-type grid. 
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FIG. 9. Distribution of sources and sinks on < plane which generates a C-type grid. 

as shown in Fig. 9. The complex velocity potential Z of the flow is given by 

Z=X+iY=logsn 
[ 
+(T+iK’),k, . 

I 
(9) 

The constants K, and k, satisfy the relation 

K;/K, = 2K’/K, 

where K, and K; are the complete elliptic integrals of the first kind with the moduli 
k, and k; = (1 - kT)‘12, respectively. The modulus k, is determined as 

k, = (1 - k’)/( 1 + k’), 

where Landen’s transformation formula is used. Solving expression (9) for 6 gives 

[(l - t’)(l - k;t2)] -I” dt - iK’. 

At the stagnation points [ = K f iK’, 

Z(K - iK’) = 0 and Z(K + iK’) = -log k, 
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FIG. 10. C-type grid for the cascade: same as shown in Fig. 3. 

hold. An example of C-type grid generated by this method is shown in Fig. 10. The 
cascade is the same as that shown in Fig. 3. The grid lines of constant X continue 
smoothly across the periodic boundaries OA, OE and the cut BA (DE). 

5. C-TYPE GRIDS II 

A generalized grid with cut BA, departs from a given point z, on the blade (e.g., 
the trailing edge; Fig. 1 l), is useful for calculating flows in the boundary layer and 
the wake with a great accuracy. Consider a flow induced by a distribution of vortices 
on [ plane, given by vortices of intensity K at 

[ = 4mK + i(4n - 1) K’, (4m - 2)K + i(4n + 1) K’. 

vortices of intensity --K at 

[ = (4m - 2)K + i(4n - 1) K’, 4mK + i(4n + 1) K’, 

FIG. 11. Streamlines of the flow which generates a grid of C-type II. 



CONFORMAL MAPPING FOR CASCADES 139 

FIG. 12. Distribution of vortices on < plane which is used for the generation of a grid of C-type II. 

Case K < 0. 

where the sign of K is defined as positive when the rotation of the flow due to the 
vortex is counterclockwise (Fig. 12). The desired grid is obtained by the superposition 
of this flow and that described by (9) (Fig. 13). The complex velocity potential of the 
resulting flow is expressed as 

Z = log sn 
[ 
$k(i+iK’),k,] 

-jK ,og cn[N- iK’), kl sn[+([ + K’), k] 
snli(C - iK’), k] cn[f(C + K’), k] ’ 

K+iq, 

(10) 

FIG. 13. Streamlines of the flow which generates a grid of C-type II. Case K < 0. 
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FIG. 14. Grid of C-type II for the cascade same as shown in Fig. 3. E, = 0.1, I, = -10.0. K = -2.05. 
a = -64.00. 

where cn is one of the Jacobian elliptic functions. The constant K is determined so 
that [, = &zS) = K + iqs is a stagnation point, i.e., 

The value of [, is obtained by solving z([,) = z, numerically. Using the properties of 
the functions Z(C) and z(c), when 

we note that the line Y = 0 makes an angle d, 

a=tan’K 

with x axis as x + co. Because expression (10) cannot be solved explicitly with 
respect to [, iterative methods are employed to obtain the values of [ corresponding 
to a given Z. When employing successive approximation, the value at a neighbouring 
point is assumed as the first approximation. But near [= +iK’, Z varies rapidly, 
therefore some relaxation procedure (with a relaxation constant .s2, typically 0.1) like 
(iii) and (v) in the case of O-type is applied in order to converge to the solution. 

An example of C-type grid generated by this method is shown in Fig. 14. The 
cascade is the same as that shown in Fig. 3. The lines of constant X continue 
smoothly across the cut BA (DE) but are discontinuous across the periodic boun- 
daries OA and OE. 
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